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Abstract

We address a problem of simultaneous quality and quantity control motivated by

semiconductor manufacturing. After wafers are fabricated, they are probed, or electrically

tested, ajid in some cases the probing facility is the bottleneck for the entire IC manufac-

turing process. Under this assumption, we consider the problem of choosing the optimal

start rate of lots of wafers into the fabrication facility and the optimal screening policy in

front of the probing facility to maximize the expected profit, which is the revenue from

good chips minus the variable fabrication and probing costs. The screening policy decides

which wafers to discard and which wafers to probe. These decisions axe subject to capac-

ity constraints at both the wafer fabrication and probing facihties. An empirical Bayes

approach is employed: the number of bad chips on a wafer is assumed to be a gamma

random variable, where the scaie parameter is unknown and varies from lot to lot accord-

ing to another gamma distribution. We fit the yield model to industrial data and test the

optimcd policy on this data.
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This paper and its companion (Longtin et al. 1992) address a particular quality

management issue in semiconductor manufacturing. The production of integrated circuits

consists of four main stages: wafer fabrication, probing, packaging and final testing, and

we will focus on the interrelationship between wafer fabrication and probing. In wafer

fabrication, disc-like wafers that contain hundreds of integrated circuits, or chips, are

produced (in batches, or lots, of usually 20 to 50 wafers) by a very long and complex

procedure involving hundreds of operations. After fabrication is completed, each chip

on a wafer is probed, or electrically tested, to distinguish between defective chips and

good chips. Each wafer is then separated into its respective chips, and nondefective

chips are covered in a protective plastic during packaging. In final testing, the chips are

functionally tested under a variety of environmental conditions before being shipped to

customers.

Problem Description. To motivate our model formulation, the process economics

and the key material flow issues need to to be briefly described. Building a wafer fabrica-

tion faciUty, or fab, costs hundreds of millions of dollars, and consequently, fab managers

are very concerned with maintaining high utilization of the bottleneck equipment, and

one of the biggest operational decisions for the fab manager is to determine the start

rate of wafers into the fab. Because of the huge amount of statistical variabihty in the

fab (due primarily to random yield, rework, and tool failures; see Chen et al. 1988 for

details), pushing the start rate beyond a certain level, which we call the fab's effective
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capacity, will result in unacceptably high levels of work-in-process inventory and long

lead times.

Despite the well-documented congestion that occurs in wafer fabrication, we have

visited several facilities where the probing (we will often use the more generic term testing

rather than probing) facility, not the wafer fab, is the bottleneck that determines the

production capacity of finished goods. There are several reasons for this phenomenon: the

testing equipment is very expensive (machines can cost three to four million dollars) and

the testing procedure is a very time consuming and labor intensive process. Furthermore,

testing capacity is sometimes labor constrained because companies are either unable or

unwilling to hire and train full-time employees in the face of uncertain future demand.

Although relative costs and revenues depend greatly on the type of market (e.g.,

commodity or custom chips) and other factors, the variable testing cost per wafer is

typically only several percent of total variable production cost, and the revenue from a

wafer of nondefective chips is roughly ten times the variable production cost per wafer.

Also, the yield in wafer fabrication, which is the fraction of chips that are good, can be

very low and erratic. Since many facilities are capacity constrained rather than market

constrained, they can sell anything they make, and any increase in yield leads directly

to an increase in profit. Consequently, yield dominates the economics of the process and

is the primary concern of fab managers.

Semiconductor manufacturers typically use an exhaustive testing policy; that is, every

chip of every wafer is tested and is deemed defective or nondefective. Indeed, the thought

of simply discarding a completed chip before it undergoes testing (unless it represents

"leftovers" from a custom order that has already been filled) goes very much against the

grain of mainstream industry thinking. In contrast, our paper and Longtin et al. axe

based on the following simple premise that has also been put forth in Goldratt and Cox

(1984): profitability can be increased by preventing bottleneck equipment from working

on products that are already defective. In particular, if testing is the bottleneck operation

under an exhaustive testing policy, then semiconductor manufacturers can increase their



profits by simultaneously (1) employing a sequential screening procedure that adaplively

discards, rather than tests, portions of wafers (or entire wafers or even entire lots) that are

thought to have a sufficiently low proportion of nondefective chips, and (2) increasing the

start rate of wafers. Of course, if the rate of wafer starts is increased, so is the congestion

in the fab and the production costs, and these two factors need to be taken into account.

To test this premise, we consider the following problem of simultaneous quality and

quantity control: determine the start rate of lots of wafers into the fab and find a sequen-

tial screening policy for the testing facility to maximize the expected long run average

revenue from nondefective chips minus the variable fabrication and testing costs of wafers.

The two controls are subject to constraints on the average effective capacity of both the

fab and the testing station; we assume that the testing capacity constraint is more re-

strictive than the fab constraint when an exhaustive testing policy is in use. To minimize

confusion, a screening procedure in isolation will be referred to as a policy and a screening

pohcy coupled with a start rate will be referred to as a strategy.

In practice, the resulting increase in profit that an optimal strategy will achieve rela-

tive to the exhaustive testing strategy commonly used in industry (that is, an exhaustive

testing policy with a start rate that keeps the testing facility working at its effective

capacity) depends greatly on two factors that will be discussed below: (1) the relative

congestion levels of the fab and the testing facility under the exhaustive testing policy,

and (2) the nature of the yield variability. Indeed, if the fab was more highly congested

than the testing facility under an exhaustive testing policy, then this policy might be

optimal, and hence sequential screening would be of no value. However, testing is also

performed after various key operations in the fab, and often (for example, see the simula-

tion models of Atherton and Dayhoff 1985, Glassey and Resende 1988 and Wein 1988) the

bottleneck workstation in the fab is the photolithography workstation, to which wafers

make many (up to twenty) visits during their processing. Thus, the framework presented

here can also be used to perform sequential screening at key tests in the fab. That is, the

start rate of wafers can be increased and undesirable wafers or chips can be discarded at



in-fab tests so that the bottleneck equipment works on higher quality chips. However,

this procedure may not be as effective in the fab as it is at probe, because type I and

type II errors are apt to be more prevalent in the fab. In particular, in-fab testing is

often visual and is not as discerning as electrical testing, and a chip that is correctly

found to be nondefective at an in-fab test may become defective before its next visit

to the bottleneck workstation. We will hereafter assume that testing is the bottleneck

operation, and more specifically, our numerical studies here and in Longtin et al. assume

that the fab is at 90% of its effective capacity when the exhaustive testing strategy is

employed.

Yield Modeling. We now discuss the nature of the yield variability. Low yield

in wafer fabrication occurs for a variety of reasons, including short product life cycles,

particulate contamination (see Osburn et al. 1988), misalignment of operations, and

chemical imbalances. Also, defective chips are difficult to detect visually, and the industry

relies heavily on the probing machines. Intuitively, sequential screening will only be

effective if dependencies and/or nonuniformities in yield can be identified and exploited.

After all, if every chip processed by the fab had the same probability of being defective,

independently of all other chips, then sequential screening would be fruitless. However,

several types of dependencies do exist and, indeed, one of our primary goals in this pair of

papers is to analyze industrial data and determine which dependencies are most prevalent

and easiest to exploit.

Recall that chips are produced on wafers, and wafers travel through the fab in lots.

Dependencies may be present at all three levels (lots, wafers, chips), including

(1) dependence across consecutive lots: the yield of consecutive lots may be positively

correlated because of machines that go in and out of control, or batch operations, such

as diffusion or oxidation, that simultaneously process multiple lots;

(2) nonuniformity in chip type: some chip types may be inherently easier to produce

than others;



(3) dependence of wafers within a lot: positive serial correlation of wafer yields within

a lot may be due to operations that simultaneously process one or more lots of wafers,

or to wafer- by- wafer operations that incur a joint set-up for an entire lot;

(4) dependence of neighboring chip locations on a wafer, defective chips are often

found in clusters (see Mallory et al. 1983 for empirical data), which may be due to

processing or particulate contamination;

(5) radial nonuniformity on a wafer: handling and processing can cause a donut-

shaped yield with more defective chips on the edge of the wafer and. to a lesser extent,

in the center of the wafer (see Ferris-Prabhu et al. 1987 for empirical data): and

(6) dependence of a chip location across wafers within a lot: mask defects and batch

operations can cause the yield of a chip location to be positively correlated across con-

secutive wafers.

Furthermore, sequential screening can be performed at all three levels: we can discard

(i) entire lots of wafers based on the yield from previous lots, (ii) wafers in a lot based

on the yield of previously tested wafers from the same lot. or (iii) chips on a wafer based

on the yield of previously tested chips. We do not pursue screening of type (i) because

dependency (1) is not very prevalent in wafer fabrication; since a wafer fab is far from a

flow line operation, lots that are processed together in the same oven during a particular

batch operation tend to go their separate ways and do not arrive together at the testing

facihty. Also, all the industrial data sets that we analyze contain lots of only one chip

type, and hence nonuniformity (2) will not be addressed. However, this factor could be

addressed in our framework by developing a different yield model for each type of chip.

Our two studies employ sequential screening of types (ii) and (iii) to exploit depen-

dencies (3)-(6). The factors underlying dependency (3), coupled with the high degree of

randomness in the production process, lead to a significant amount of lot-to-lot variabil-

ity in mean yield. In this paper, sequential screening of type (ii) is employed to exploit

lot-to-lot variabiUty. Our yield model assumes that the number of defective chips on each



wafer in a given lot is an independent gamma random variable with shape parameter q

and scale parameter fi. An empirical Bayes approach is used, where the scale parameter

(3 is unknown and varies from lot to lot; for each lot, the parameter 3 is chosen indepen-

dently from a (different) gamma prior distribution. A sequential screening policy in this

setting decides when to discard the remaining wafers in a lot.

Industrial data from Bohn (1991) is used to estimate the parameters for the yield

model in this paper. Since the primitive empirical data in Bohn is the number of non-

defective chips on each wafer, this data cannot be used to analyze the more detailed

spatial and temporal dependencies described in (4)-(6). Longtin et al. analyze over 300

wafer maps (see the Appendix of that paper for some e.xamples) from two wafer fabs.

and model the chip yield by a Markov random field, which is a stochastic model that

allows the probability of a chip being nondefective to depend on the resulting yield of the

neighboring chips. A variety of sequential screening strategies of type (iii) are proposed

that discard individual chips on a wafer. In summary, the present paper employs sequen-

tial screening at the wafer level to exploit lot-to-lot variability and Longtin et al. employ

sequential screening at the chip level to exploit detailed spatial dependencies within a

lot.

The two key aspects of yield modeling that we focus on, lot-to-lot variablity and

spatial dependence on and across wafers, have received very little attention in the IC yield

modeling hterature. We know of no models capturing the former aspect and Flack (1985)

appears to contain the only yield model that explicitly accounts for spatial dependence

of chips on a wafer. Nearly all the existing yield literature (see Cunningham 1990 for a

recent survey) calculates the proportion of nondefective chips on a wafer by considering

the chip axea and density of point defects on the wafer. These derivations lead to a two

parameter distribution (the negative binomial distribution, which describes a Poisson

random variable mixed with a gamma, appears to be the most effective) that can be

fitted to the mean and variance of the empirical data for the number of nondefective

chips per wafer. According to Cunningham, the goal of most of the chip yield modeling



research has been to predict costs and actual yields, and to determine the appropriate

level of circuit integration. Albin and Friedman's (1989) work on acceptance sampling

appears to be the first to employ a yield model in a quality control context: they use a two

parameter distribution (the N'eyman type A. which is a Poisson compounded Poisson) to

model the number of defective chips on a wafer. Because they were interested in quality

control issues rather than circuit design issues, they directly modeled the yield without

resorting to the defect density and chip area, and we do the same in this pair of papers.

Summary of Results. The optimization problem addressed in this paper is essen-

tially an optimal stopping problem embedded within a mathematical program, and the

optimal solution is determined numerically by solving a series of parameterized optimal

stopping problems. Since the optimal strategy is difficult to calculate, we also find the

optimal fixed sample size strategy, where a fixed number of wafers from each lot is tested,

after which the controller either discards or tests all the remaining wafers in a lot. Five

of Bohn's industrial data sets are used to estimate the parameters of the yield model,

and the two proposed policies are derived for all five data sets. For our parameter values,

the maximum possible profit increase that an optimal strategy can achieve relative to

the exhaustive strategy commonly used in industry is between 11.1% and 12%; the exact

upper bound cannot be mentioned without revealing the true yield of Bohn's wafers.

The fixed sample size strategy and the optimal strategy achieve a 2.2% and 2.5% average

profit increase over the five data sets, respectively.

These two strategies are also tested on the actual data in a simulation study. By

randomly shuffling the wafers in a lot, 100 lots of wafers are generated from each lot in

the five data sets. If the yield model underestimates the average number of discarded

wafers per lot in the simulation study, then the testing facility will be underutilized and a

suboptimal strategy is obtained. If the yield model overestimates the average number of

discarded wafers, then the testing facility will be overutilized, and an infeasible solution

can result. Under the fixed sample size strategy, the model accurately predicts the average

number of discarded wafers per lot, and an average profit increase of 1.2% is achieved.



Under the optimal strategy, the model underestimates the average number of discarded

wafers by an average of 2.5% over the five data sets, which results in an average profit

decrease of 0.7%.

In summary, the fixed sample size strategy may be preferable to the optimal strategy,

since it is much easier to derive and to implement, it performs nearly as well on the

analytical model, and appears to be more robust when faced with the actual data sets.

We believe that the discrepancy between the theoretical results and the simulation results

is due primarily to the assumption that all lots in the same data set have the same shape

parameter q. Hence, a relaxation of this assumption is probably required to obtain a

more accurate estimate of the average number of discarded chips per lot, which should

lead to a more effective and reliable strategy. The profit increases reported here are

relatively small and, in particular, are significantly smaller the the increases achieved by

screening at the chip level in Longtin et al. However, readers should keep in mind that

a 1% increase in revenue minus variable cost can represent millions of dollars annually.

Also, since the fixed cost component is so large in this industry, a 1% improvement here

would translate into a much larger percentage improvement in a company's reported

profits.

The remainder of the paper is organized as follows. In Section I, the yield model is

described in detail, and the modeling assumptions are compared with the conclusions of

Bohn's empirical study. The stochastic optimization problem is formulated in Section 2.

The optimal fixed sample size screening strategy is found in Section 3, and the optimal

sequential screening strategy is derived in Section 4. Numerical results are reported in

Section 5. Concluding remarks on this paper and Longtin et al. can be found in Section

7 of the latter paper.

1. The Yield Model and Industrial Data

Our yield model assumes that the number of defective chips on each wafer in a given lot



is an independent gamma random variable with shape parameter q and scale parameter

J. An empirical Bayes approach is used, where the shape parameter q is the same

for all lots but the scale parameter J varies from lot to lot: for each lot. the value of

the parameter J is chosen independently from a gamma prior distribution with known

parameters a and h. The two gamma distributions form a conjugate pair, if the parameter

J has a gamma ia.b) distribution prior to testing a wafer, and if .r chips on the wafer

are found to be defective, then 3 has a gamma (a + a,b + x) posterior distribution.

Figure 1 Die Yields of 11 Batches from Factory CI



of good chips, or die. on each wafer of each lot. In Figure 1. we reproduce Figure 1 of

Bohn. which displays a summary of data set Cl. Each column in Figure 1 corresponds

to a lot of wafers and each point represents the number of good chips on a particular

wafer; hence. Figure 1 essentially contains 11 yield histograms, one for each lot. Bohn

Ccime to the following three conclusions concerning his 11 data sets: (i) the mean yield

of each lot varies considerably from lot to lot (e.g.. compare the last two lots): (ii) the

within lot variabihty (i.e.. the vertical spread of points in each column) is high: and (iii)

there is a high variation between lots of within lot variability (e.g.. compare the second

and seventh lots).

The gamma-gamma model certainly captures the lot-to-lot variabihty in mean yield.

However, plenty of other conjugate pairs would also capture this effect. In fact, before

considering the gamma-gamma pair, we performed our entire analysis using the beta-

binomial pair and the gamma-Poisson pair: the beta-binomial model, in particular, has

intuitive appeal, since the number of bad chips per wafer is explicitly modeled as ein

integer between zero and the number of chips on a wafer. However, the binomial and

Poisson assumptions significantly underestimate the within lot variabihty of chip yield.

More specifically, we calculated the mean and variance of the number of good chips on

each wafer of a given lot. and determined the variance-to-mean ratio for each lot in

the five data sets. The average ratio over all 53 lots was 7.6 and the range was 1.8 to

30.3. In contrast, the corresponding \ariance-to-mean ratio under the binomial (Poisson.

respectively) assumption is less than (equal to. respectively) one. Consequently, when

the controls derived from these two \-ield models were tested on the actual data, too

mamy wafers were discarded at the testing facihty. which led to a significant reduction

in overadl profit. .Although the gamma-gamma conjugate pair captures the substantial

level of within lot variabihty. it is unable to capture the high variation between lots of

within lot variabihty. Perhaps a gamma-gamma model in which both the shape and

scale peirameters are unknown would capture this effect: computationad considerations

prevented us from pursuing this avenue. In summary, the gamma-gamma model captures

the effects in conclusion (i) and (ii), but does not capture the effect in conclusion (iii).
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To further investigate the validity of our model, we test the derived policies on the actual

data sets in Section 5.

Finally, readers may note that the number of wafers in a lot is not constant in Figure

1. This is due to the scrapping of entire wafers during fabrication. Hence, we also assume

that each wafer in a lot has a certain probabihty of being scrapped during fabrication,

so that the size of a lot exiting the fab is a binomial random variable.

2. Problem Formulation

In this section, we mathematically formulate the optimization problem described in

the Introduction, and pictured in Figure 2. Each lot entering the fab contains I wafers

and each wafer consists of M chips. Each wafer in a lot is scrapped during fabrication

with probability q. and hence the lot size / of a wafer exiting the fab is a binomial random

variable with parameters L and 1 — q. Since the exact number of wafers in a lot is known

when the lot arrives to the testing faciHty. it is natural to use this information to develop

an optimal screening policy. However, this would require us to derive a different optimal

screening pohcy for every possible value of /. which makes the optimal solution much

more difficult to compute and harder to implement in practice. Instead, we do not allow

our screening policy to differ from lot to lot. except for the obvious constraint that no

more than / wafers can be tested from a lot with / wafers. Since most fabs t\-pically scrap

about 5-10% of their wafers, this assumption should not lead to significant degradations

in performance.

scrapped

qlA wafers ' week

untested wafer?

X lots/week (l-q)LX wafers«'weeK

TESTING
Mj wafers.week

good wafers

bad wafers

Figure 2. The semiconductor manufacturing faciHty.
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For a typical lot exiting the fab. let Xn be the number of defective chips on the nth

wafer, for n = 1 /. and let .s^ = Ill=\ J^k be the total number of defective chips on

the first n wafers. Let the decision variable u„ = 1 if the nth wafer is to be tested and

u„ = if the nth wafer is to be discarded. A screening policy is defined by the vector

u = (ui,U2, .... ul). where u„ = for n > /. For n = 1 /, the decision ^in depends on

(xi, ...,Xn_i) only through the sufficient statistic 5„_i, where ^o = 0. The profit generated

bv wafer n is

''

if u„ = 0,
g(xn,u„) = < (i:

r{M - ir,) - ct if u„ = 1,

where r is the revenue received from a good chip and cj is the variable testing cost per

wafer. For a given policy u. the expected profit from testing one lot of wafers is

L

V{u) = E[Y,g(^n.Ur,)l (2)
n= \

and the expected number of wafers tested per lot is

N{u) = E['tunl (3)

n=l

where both expectations are over the random variables /, which is embedded in the

definition of //„. and (xi,...,j().

The problem of finding a screening policy u that maximizes (2) is an optimal stopping

problem. Our problem of simultaneous quality and quantity control involves one more

decision variable and two extra constraints. The decision variable is the lot start rate

A, which is the number of lots introduced into the fab per week. Let the fab's effective

capacity be ftp lots per week and let the testing facility's effective capacity be hj wafers

per week. We assume that if the rate of work entering either of these facilities exceeds

its effective capacity, then unacceptably high lead times and work in process inventory

levels will be incurred. Hence, the two constraints are

and

XN{U) < fiT. (5)
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Our optimization problem is to choose the start rate A and a screening pohcy u to

maximize

\{V(u)-cr) (6)

subject to constraints (4) and (5), where Cf is the variable fabrication cost per lot.

We conclude this section with some assumptions on the problem parameters. Before

any testing is performed, the a priori expected number of defective chips on a wafer is

E[Xn] = -. (7)
a — I

To ensure that this quantity is positive, we need to assume that a > 1, which holds

for the parameter estimates obtained from Bohn's data in Section 5. If we denote the

exhaustive testing policy by u , then

V'(u^) = (1 - q)L[r{M - -^) - CtI (8)
a — [

and

We assume

N{u^) = {\-q)L. (9)

^^
(101

(1 -q)L

so that the testing facility is the bottleneck under the exhaustive testing policy, and

r(A/-^)-cx>-^. (11)
a — I (1 — q)L

so that exhaustive testing is profitable.

3. The Optimal Fixed Sample Size Screening Policy

Since the optimal solution (A,u) to problem (4)-(6) is difficult to obtain, we restrict

ourselves in this section to a fixed sample size screening policy, which is denoted by u"- .

Under this strategy, the number of wafers tested from a lot is min{n,/}. If the total

13



number of defective chips found in these wafers is less than or equal to B. then the

remaining wafers in the lot are tested; otherwise, the remaining wafers are discarded.

Standard calculations show that

,
r(a + (n-l)a) 6-^7'^"^ ..

^^'-'^ - r(a)r((n-l)a)(6 + .„_,r<"-"-'
'""' -

'
'

'

is the probability density function for the number of bad chips on the first n — 1 wafers

tested, and

^x„|s„_i =— (13)
a + (n — i)Q — 1

is the expected number of defective chips on the nth wafer, given that Sn-i defective

chips are found on the first n — I wafers. .Also, the probability that a lot entering the

testing facihty has / wafers is given by

\
L

H{1) =
"

/

I'-'iL-l)". (14)

Hence, the expected profit per lot of wafers is

V^K"^) = J2HU){rl{M-E[x^])-lcT}
1=0

+ X^ //(/)r{n(M-£[x„]) + (/-n) / (A/ - £[x„+,|5„])/(.sjrf.s,}

- ^ //(/)cT{n + (/-n) / f{sn)dsr,} (15)

l=n+l -

and the expected number of wafers tested per lot is

iV(t/"-^) = f^ //(/)/+ X^ //(0{n + (/-n) / f(Sn]dsn}. (16)

Thus, problem (4)-(6) reduces to

max A(V(u"'^) - c/r) (1")

subject to A < /zf (IS)

AAr(u"'^) < MT, (19)

14



which is equivalent to

max mm{fiF.fiT/y{u''-'')}{Viu'''") - cp). (20)

Since a closed form solution to (20) appears to be unattainable, we exhaustively

enumerate over the integer values {n.B : < n < 1:0 < B < n.M) to find the optimal

solution. The calculations are considerably streamlined by observing that

V(u-^) = V{u--^-')+ Y. H{l)T{l-n)l {M-E[x^^,\sr.])f{sr,)ds^

L .B
- Y, H{l)cT[l-n) / f{Sr.)ds^ (21'

/= n + l

and

A'(u-S) = .V(u-s-i)+
Y. H[l)[l-n)r f{sjds„. (22)

Hence, for each B. only /g., £'[j„+i|5n]/(5„)(is„ and fg_^ f(Sr,)dsn have to be calculated.

4. The Optimal Solution

In this section, a computational procedure is developed to solve problem (4)-(6). which

is essentially an optimal stopping problem embedded within a mathematical program.

First we reformulate the problem into the equivalent two-step maximization problem

max \{V\-cp) (23)
0<A<MF

where

Vx = maxV(u) (24)

subject to iV(u) < ^. (25)

Proposition 1. (A*.u*) is an optimal solution to problem problem (4)-(6) if and

only if u' is an optimal solution to problem (24)-(25) with A = A* in (25), and A* is

15



(he optimal solution to (23). The optimal objective function value is the same for both

problems.

Proof. If (X\u') is an optimal solution to problem (4)-(6), then u' satisfies (25)

with A = A' and, for any screening policy u satisfying this condition, we have

X'{V{u-)-cp-)>\-{V(u)-cr) (26)

or

V{in > V{u). (27)

Hence, u' is an optimal solution to problem (24)-(25) with A = A' in (25), and V'(u") =

Vx'.

Observe that

X-{V(u')-Cf)>\{V[u)-cr) (28)

for all A and u satisfying (4) and (5). Fixing A and maximizing over u subject to (25)

yields

^'{Vx'-cf)>\(Vx-cf) (29)

for all A such that < A < f.if. Therefore, A* is an optimal solution to (23) and the

optimal objective function value is the same for both problems.

Conversely, if u' is an optimal solution to (24)-(25) and A* is an optimal solution to

(23), then they jointly satisfy constraints (4) and (5). For any other feasible solution

(A,u) to (4)-(6), we have

XiViu) - of) < A(Vx - cr] < X'{Vx' - cp) = X'(V{u') - c/r), (30)

which implies that (A*,u*) is an optimal solution to (4)-(6), and the optimal objective

function value is the same for both problems. I

Let u° be the screening policy that maximizes the function V(u) defined in (2).

Maximizing V(u) is an optimal stopping problem and will be discussed later in this

section.
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Proposition 2. If .\'{u°) < ht/i-I-f- f/^en the optimal solution to (23)-(25) is u' = u°

and \' = fj.f.

Proof. Since the screening strategy «° maximizes V{u) with no side constraints, it

also maximizes (24)-(25) for all A 6 [0. /ir/.V(u°)]. Since N(ii°) < ^ij/nr- it follows

that u° optimizes (24)-(25) for all A G [0,/i/r]. By (11). the exhaustive testing policy is

profitable, and hence I (ti°) > and setting A = ^ip optimizes (23). I

Thus, when .V(u°) < jij/np. the probing facility is not used to its full effective

capacity, and the solution to (4)-(6) is obtained by solving a single optimal stopping

problem. We now consider the more interesting situation where N(u^) > j.ljI i.Lf. Since

u° optimizes (24)-(25) for all A € [0. //T/^'(»°)]. (23) can be replaced by

max \{\\-cf). (31)
mt/.V("°)<a<mf

If problem (24)-(25) can be solved efficiently for a given A, then a one-dimensional search

over A G [/ir/.V(u°)./i/r] for the largest value of A(Va — cp) will yield an optimal solution

to our original problem. Since (24)-(25) is a constrained optimal stopping problem, we

solve this problem by employing a Lagrangian approach. Let 7 be the Lagrange multiplier

for constraint (25) and define

5"'(x„,{in) = <

if u„ = 0.

(32)

r(iV/-x„)-CT-7 ifu„ = l.

Notice that 7 plays the role of an additional testing cost, so that the total testing cost

per wafer is cj + 7. Define the Lagrangian function

Viu) = V{u)-tN{u)
L

= £[^^(x„,u„)l-7^(u)
n=l

= E[X;g-(x„,u„)], (33)

n= l

and consider the Lagrangian problem

maxV^(u). (34)
U
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Proposition 3. If the screening policy u'{f) solves the Lagrangian problenn for some

7 > 0, and

vV(u-(7)) = y. (35)

then u'{f) is the optimal solution to problem ('24)-(25).

Proof. For any screening strategy u satisfying (25),

V(u) < V'(u)-7iV(u) + 7^
< V{u'it))-fN{u'{f)) + f^
= V'(u-(7)). I (36)

Since 7 enters the Lagrangian problem as an additional testing cost, it is not hard

to show that the optimal objective function value in (34) is a continuous nonincreasing

function of 7. The proof of the following proposition relies on this fact and the conjecture

that the optimal expected number of wafers tested per lot N{u'(f)) is also a continuous,

nonincreasing function of 7. Although this conjecture has been borne out in our numerical

study and seems as intuitively obvious as the continuity and monotonicity of the optimal

objective function value, the awkward expression for N{u'{'y)) in (52) has prevented us

from providing a rigorous proof.

Proposition 4. If N(u°) > nxl I-lf- ^^^" there exists a 7G (O.rM] such that u'(^) is

an optimal solution to (24)-(25) with start rate \ = ^f.

Proof. As 7 increases from to rM, V^(u*(7)) decreases from V{u°) to 0, since

the optimal solution to (34) is to discard all wafers when 7 = rM. Similarly, if our

conjecture is correct, A'^(u'(7)) decreases from iV(u°) to as 7 increases from to rM.

Since < /xt/mf < N{u°), there must be a 7 € (0,rM] for which N(u'(^)) = /ir/zT-

By Proposition 3, u'{^) is an optimal solution to (24)-(25) with start rate A = fip- I

Propositions 3 and Proposition 4 can be combined to develop a search procedure

for solving problem (4)-(6). For fixed A € [ij.t/N{u°), hf], we solve (34) and search for

that 7 for which ;V(u'(7)) = ^iT/^ Proposition 4 guarantees the existence of such a
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7 in the interval [O.7]. Then, we evaluate the objective function in (31) and search for

a A' that has the largest objective function value. However, the search over A can be

accomplished simultaneously as we search over 7. For each 7 G [0,7]. we solve ('i-i) and

let A = ij.t/N{u' {-))). By Proposition 3, "'(7) is the optimal solution to (24)-(25) with

this value of A. and the objective function in (31) can be evaluated. Since for every

A G [^t/-V(u°).^f] there exists a 7 in the interval [0,7] such that .V(u'(- )) = /ij/-^-

every A G [^r/(l ~ <7)-^-/'f] is searched as all 7 G [0,*/] are searched. Thus, one search

over 7 G [O.7] is sufficient to find the optimal start rate A' to (31) and the optimal

screening policy u' to (24)-(25). Readers can find an outline of this algorithm at the

end of this section.

We now focus on solving the Lagrangian problem (34). Let

1

be the probability that a lot has more than / wafers, and let

n I ^

r(a + na) (6 + 3„-i)"^'"-"-(r„)-^
-^(""1^''-' = r(a)r(a + (n-l)a) (6 + .„., + xj-'^^ '

"" " ^' ^^^^

denote the posterior probability density for the number of bad chips on the nth wafer.

given that Sn-i bad chips are found on the first n - 1 wafers. If V'^*'(5n) represents the

expected profit obtained from wafers n + 1,...,I. given that Sn bad chips were detected

on the first n wafers, then u'[-)) and V"'(u*(7)) can be found by solving the dynamic

programming equations

V^{sl) = (39)

/•oo

V„''(5„) = max{0,G(n) / [r{M - x^+i) - ct - f + l^+.isn + Xn+i)\f{Xn+i\sn)d.r^+,}.
Jo

n = L-l 1. and (40)

/•oo

V^(u) = ^(7(0) = max{0,G(0) /
[r{M - i^) - ct - 1 + V^''{xi)]f(xi)dxi}. (41)

After n wafers have been tested, we can discard the remaining wafers and obtain no profit.

If the lot has more than n wafers, then we can continue testing; if wafer n + 1 contains

j„+i bad chips, then the immediate profit is r{M - J„+i) -07-7 and the expected
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future profit is Vn+ii^n + -^n+i)- These equations also reveal structural properties of the

optimal solution to (34), which are discussed in the two propositions below.

Proposition 5. The optimal policy u'{f) = (ui(7), ..., u^(-, )) is

u\ = \ if 5„_i <B;:_i, (42)

u-„ = if5„_i >B;:_i, (43)

where the stopping boundary B^ > — l,n = 1,...,L, and 5^_i = —1 indicates that wafer

n is not tested under any circumstances.

Proof. We only need to show that V'„"'(5n) is nonincreasing in Sn, which is done by

a backward induction on n. It is trivially true for n = I. Suppose it is true for n + 1,

and consider the difference V^isn + 1) — ^ni^n)- In order to prove that this quantity is

nonpositive, the following properties of the conditional density /(jn+i|5„) are required.

For n = 1, . . . , I — 1 and .s„ > 0, there exists Xn+i > 1 such that

/(x„+i - 1|5„ + 1) > /(j„+i|5„), for Xn+i > Xn+i, and (44)

/(j^+i - l|.s„ + 1) < /(x„+i|5„), for Xn+i < x„+i. (45)

These inequalities can be verified using (38). By (40), it suflfices to consider the difference

/
[(r(M - x„+i) -CT-1 + V;:+,{sn + 1 + X„+,)/(x„+i|.^„ + l)(fx,+i]

Jo
/•CO

-
/ [{r{M - X„+i) - Cj - 7 + V;\i(5„ + Xn+l)f{^n+l\^n)dXn+i]
Jo

= -+ K\i(5„+ 1 +Xn+i)/(x„+i|s„+ l)(fXn + l

a + na — 1 Jo
roo

Jo

roo

< / [KVl(^n + 1 + -C„+l) - KT+JSn + X„+i)]/(x„+i|5„ + l)c?X„+i

- /"[V„'Vi(5„+x„+i)-V;'Vi(5„ + x„+i)]/(x„+,|5„)(fx„+i. (46)

Jo

Changing the integration variable in the first integral from x„+i to x„+i + l and combining
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/'

the two integrals in (46), we get

[Vn+ liSn + ^n+l) - V;\
, ( 5, + X„+ i )] [/(x„ + i - l|s„+ 1) - /( X„+ ,

|.SJ](fx, + ,

-/ [Vn'+l('Sn + -Tri+ l) - ^n''+l('^" + •^n+l)]/(-rn+ l|-«n)^-rn+ l- (47)
.'0

The two terms inside the first integral have opposite signs by (44)-(45) and the induction

hypothesis; hence, the first integral is nonpositive. The second integral is nonnegative

because, by the induction assumption, V„\i(.s„ + j-„^,) > V'„\i(5„ + x„+i ) for < Xn+\ <

1 < Xn+\- Therefore, (47) is nonpositive, and the induction is verified. |

The following proposition establishes monotonicity of the optimal stopping boundary,

and is used to streamline the dynamic programming algorithm. The proof is similar to

the proof of Proposition 5, and is omitted.

Proposition 6. The optimal stopping boundary satisfies

Bo<B]<...<B2_j. (48)

The dynamic programming equations (39)-(41) involve L functions of continuous

variables. In the numerical computations, we discretize the continuous variables and

approximate the integrals by finite summations. Two observations are helpful in reducing

the amount of computation. First, the final boundary point can be explicitly derived,

and equals

^2-1 = (a + (L-l)Q-l)(A/-(7 + CT)/r)/a-6. (49)

Also, since Ki(5„) is nonincreasing in 5„, we calculate V^{sn) starting from 5„ = 0, and

if Sn is found such that K^l^n) = 0, then we set V;(x) = for all x € (sn,nM].

After the optimal solution u'(f) to the Lagrangian problem is derived, we need to

determine N{u'{f)), which is the expected number of wafers that are tested per lot.

Notice that the optimal boundary point 5o = -1 or 0. If BJ = -1, then the screening

poUcy u'{f) cannot be optimal for the original problem (4)-(6), by (11). If Bq = 0. then

Cn= /'.../ "
f{Sn-Sn-xK-^)..-f{si)dSn...ds„ n = !,...,! -1, (50)

Jai=0 Js„=0
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and the probability that testing ceases after the nth wafer is

Tn = C„_i -Cn, n = 1,...,I- 1. (51)

where Co = 1 • Then the expected number of wafers tested per lot is

N{n {-,)) = Y.^T^^L{\-Y^T^). (52)
n=l n=l

We conclude this section with an outline of the algorithm that solves the original

optimization problem (4)-(6).

Algorithm:

Step 1. Let 7 = and set 7' = 0.

Step 2. Find the optimal solution "'(7) to the Lagrangian problem (34) and the

optimal objective function value V~'{u'{~^)). If the optimal boundary Bq — —1, then

stop. The optimal start rate is A^* and the optimal screening policy is u'(7').

Step 3. Calculate N{u'{~i)) using (52), and define A^ = ^itIN[u'{-i)).

Step 4. Compute the objective function value for the original problem,

P, = y[V\u{',)) + 7vV(u-(7)) - cf\. (53)

If P-, is the maximum over all P^'s calculated thus far, then let 7' = 7. Change 7 to

7 + (5, where 6 is a small step variable, and go to step 2.

Notice that the algorithm is guaranteed to terminate, since Bq = —\ when 7 — rM.

If we could prove that P^ is concave in 7, then a binary search, rather than an exhaustive

search, over 7 € [0,rM] could be employed, thereby saving a considerable amount of

computation. For all five data sets considered in the next section, P-, is indeed concave

with respect to 7. Although we have been able to prove that the optimal value function

V'^{u'{-^)) is decreasing and concave in 7, we have been unable to prove the concavity of

P-yl our obstacle is again the expression for N{u'{'^)) in (52).
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5. Numerical Results

In this section, we test the optimal fixed sample size screening strategy and the

optimal sequential screening strategy on five sets of yield data, where each set has about

10 lots and each lot has less than 25 wafers. The data sets, denoted by Cl,Cl -5,02.02.

5

and C3, were obtained by Bohn from the same factory producing the same product in

five different time periods. For each of the five data sets, maximum likelihood estimation

is used to obtain values of the gamma parameters a, a and 6. More specifically, the

following procedure is followed for each data set. If a data set contains m lots, then the

maximum likelihood estimates (qi, ....q^) and {,3i ,3m) are obtained from the number

of defective chips on each wafer in the set. We estimate a by d, which is the median of

(Qi,...,Qm). and then recompute the estimates (i3i 3m) by assuming that the number

of defective chips on each wafer in lot k is a gamma random variable with known shape

parameter a and scale parameter 3^. Finally, the revised estimates (/^i, ..., Jrn) are used

to obtain maximum likelihood parameter estimates a and b. These parameter estimates

a. a and b are not reported here for reasons of confidentiality. We also performed the

identical estimation procedure, but chose a to be the mean, rather than the median, of

(ai, ...,am); the profitability results for this case were quite similar to the results obtained

from the original procedure and are omitted.

As mentioned earlier, we assume that when the the probing facility is working at its

effective capacity under the exhaustive testing policy, the fab is working at 90% of its

effective capacity. The wafer scrap rate is 5%, the variable probing cost per wafer is 3% of

the variable fabrication cost per wafer and the revenue from a wafer containing all good

chips is 10 times the wafer's variable production cost. These parameter values are based

on discussions with a variety of semiconductor managers and engineers, and are used to

derive the optimal fixed sample size strategy and the optimal sequential screening strategy

for each of the five data sets. Both screening policies vary little over the five data sets, and

Figure 3 illustrates the two policies for data set Cl. The stopping boundary characterizing

the optimal sequential screening policy is nearly linear, but slightly convex, for every data
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set, and the slope increases with increased lot-to- lot variation. Since the slope determines

the acceptable yield level, as the lot-to-lot variability increases, more testing is required

before discarding the remaining wafers in the lot. The average acceptable yield level over

the five data sets is 13.7% lower than the overall average yield. The optimal fixed sample

size policy samples either )r 6 wafers from every lot in each data set, and requires a

slightly higher yield level to continue testing than the optimal sequential policy. Since

the fixed sample size policy stops monitoring yield after a lot is considered acceptable

while the sequential screening strategy monitors yield continuously, it is not surprising

that the former only accepts lots of expected higher yield level.
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Figure 3. Optimal screening policies for data set Cl.

Recall that the strategy commonly used in industry is to perform exhaustive testing

and to choose the start rate so that the testing facility works at its effective capacity.
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Before reporting our profit results, it is useful to determine an upper bound on the profit

increase that can be achieved relative to this straw strategy. Let A^ = ^.ltI{\ — q)L

denote the arrival rate under the exhaustive testing strategy, and let

M - ^
y = -V^ (54,

denote the average incoming yield. Then an upper bound on the relative profit increase

for any strategy is

X'{V{u')-CF)-XEiV{n^)-CF) __ X'-\^ \^(V(u')-V{u^)\

\^{V{u^)-cf) A^ \E\ V{u^)-cf j

A^ \^\rL[\ -q)My- Lcj - cf

^ MF- A^ fiF
(

Lct(1 - y]

\E + A^ \rL{l - q)My - Lcj - Cf f
'

*'"

Since we assumed that Lcj = 0.0.3cf . rLAf = lOcf , q = 0.0.5 and the fab is at 90% of its

effective capacity under the exhaustive strategy, the upper bound equals

1
,
lO( OM{l-y) \

'^^--9^Y[ 9.5y-im )-
^''^

This quantity increases from 1/9 when yield is 100% to oo as yield approaches the critical

level of 10.58% required for profitability in (11). Although the exact average yield cannot

be revealed, the yield was greater than 36% for all five data sets, and hence AF^ax is

between 11.1% and 12.0%.

Under the heading "Theoretical Calculations", Table I reports the profit increases

relative to the exhaustive testing strategy obtained by the two proposed strategies for

all five data sets. We also display pF = ^Ip^f and pj = {\N(u)/ pj), which represent

the effective capacity utilization of the fab and testing facility, respectively. It can be

seen that for every data set, both facilities work at their effective capacity. However, the

profit increcLses are rather small: out of a potential 11.1% to 12.0% increase, only a 2%

to 3% increase is achieved. Also, the difference in performance between the two proposed

policies is relatively small; the fixed sample size policy averages a 2.24% profit increase

over the five data sets, compared to 2.51% for the optimal strategy.
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Table 1. Numerical results.

Data Set



wafers tested per lot were recorded. These quantities and the theoretically calculated

start rates were then used to calculate the profit increases that are reported in Table I

under the heading "Simulation Results".

When the derived policies are tested on the actual data, two undesirable things can

occur. If the yield model underestimates the number of discarded wafers, then the testing

facility is underutilized and a feasible, but suboptimal, strategy is obtained. If the

yield model overestimates the number of discarded wafers, then the testing facility is

overutilized, and an infeasible strategy can result. Referring to Table I, we see that the

yield model correctly predicts the average number of discarded wafers per lot under the

fixed sample size policy for three of the five data sets, and is off by about 1% on data

sets C2 and C2.5. However, the yield model is less accurate under the sequential policy,

underestimating the average number of discarded wafers per lot by .3-5% in three of the

five data sets. In these cases, the resulting profit is sometimes less than under exhaustive

testing. Both policies overestimated the number of discarded wafers in data set C2.5 and

the resulting strategy is not feasible: hence, the profit increases reported for this data set

correspond to a reduced start rate that maintains feasibility. That is, the profit increase

of 0.75 (0.90, respectively) was achieved by reducing the start rate so that pf = 0.991

(0.993, respectively) and pr — 1.000. The average profit increase over the five data

sets for the fixed sample size strategy is 1.23% in the simulation study, about 1% below

the corresponding improvement achieved in the theoretical calculations. The sequential

strategy averages a 0.70% profit decrease relative to the straw strategy, because of the

underutilization of the testing facility in cases Cl.5 and C2. Hence, in addition to being

eaisier to derive and to implement than the sequential strategy, the fixed sample size

strategy performs nearly as well in the analytical calculations, and appears to be more

robust in our limited simulation study.

As a point of reference, we also considered the beta-binomial yield model, where the

number of bad chips on each wafer is modeled as a binomial random variable. This

yield model significantly overestimated the average number of wafers tested per lot: the
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average value over the five data sets of pT vinder the sequential strategy in the simulation

study was only 0.861, which led to an average profit decrease of 11.68%.
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